A modified update rule for stochastic proximity embedding.

نویسندگان

  • Dmitrii N Rassokhin
  • Dimitris K Agrafiotis
چکیده

Recently, we described a fast self-organizing algorithm for embedding a set of objects into a low-dimensional Euclidean space in a way that preserves the intrinsic dimensionality and metric structure of the data [Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 15869-15872]. The method, called stochastic proximity embedding (SPE), attempts to preserve the geodesic distances between the embedded objects, and scales linearly with the size of the data set. SPE starts with an initial configuration, and iteratively refines it by repeatedly selecting pairs of objects at random, and adjusting their coordinates so that their distances on the map match more closely their respective proximities. Here, we describe an alternative update rule that drastically reduces the number of calls to the random number generator and thus improves the efficiency of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization using Modified Stochastic Proximity Embedding under Correlated Shadowing

Localization is the process of finding the location coordinates of a node. Distances from nodes with known coordinates is required for this computation. In most of the literature, the errors in these distance measurements are assumed to be independent. However, in the real world this does not hold true. There is a need to design algorithms for the case when the errors are correlated. In this wo...

متن کامل

A two-stage stochastic rule-based model to determine pre-assembly buffer content

This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decide...

متن کامل

Stochastic proximity embedding

We introduce stochastic proximity embedding (SPE), a novel self-organizing algorithm for producing meaningful underlying dimensions from proximity data. SPE attempts to generate low-dimensional Euclidean embeddings that best preserve the similarities between a set of related observations. The method starts with an initial configuration, and iteratively refines it by repeatedly selecting pairs o...

متن کامل

Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System

Sometimes conventional feedback controllers may not perform well online because of the variation in process dynamics due to nonlinear actuators, changes in environmental conditions and variation in the character of the disturbances. To overcome the above problem, this paper deals with the designing of a controller for a second order system with Model Reference Adaptive Control (MRAC) scheme usi...

متن کامل

Inductive Modelling of Temporal Sequences by Means of Self-organization

In this paper we present a new self-organizing neural network, which builds a spatiotemporal model of an input temporal sequence inductively. The network is an extension of Kohonen’s Self-organizing Map with a modified Hebb’s rule for update of temporal synapses. The model building behavior is shown on inductive learning of a transition matrix from a data generated by a Markov Chain.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular graphics & modelling

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2003